运载工程:2017,Vol:36,Issue(9):1428-1433
引用本文:
高建树, 刘浩, 王明强, 史经伦, 邢书剑. 改进粒子滤波算法对电动汽车电池SOC的估计[J]. 机械科学与技术
Gao Jianshu, Liu Hao, Wang Mingqiang, Shi Jinglun, Xing Shujian. An Improved Particle Filter Algorithm for SOC Estimation of Electric Vehicle Battery[J]. Journal Of Remote Sensing

改进粒子滤波算法对电动汽车电池SOC的估计
高建树1,2, 刘浩1, 王明强1, 史经伦1, 邢书剑1
1. 中国民航大学航空地面特种设备民航研究基地, 天津 300300;
2. 中国民航大学机场学院, 天津 300300
摘要:
引入SIR粒子滤波算法用于估算电动汽车电池的荷电状态(State of charge,SOC),利用系统状态连续近似分布进行采样的正则化滤波算法解决了SIR粒子滤波算法多样性匮乏问题。结合安时法构建电动汽车电池的状态空间模型,进而对电池模型进行参数辨别,结合SIR粒子滤波算法和改进后的粒子滤波算法在MATLAB中进行实验仿真。仿真结果显示,随着时间的增加,SIR粒子滤波算法估算电池SOC误差会变大,改进后的粒子滤波算法估算电池SOC一直逼近真实值,比SIR粒子滤波算法精度高、适应性更好,为电动汽车电池SOC的估算提供了新思路。
关键词:    粒子滤波算法    电动汽车    荷电状态    正则化滤波算法   
An Improved Particle Filter Algorithm for SOC Estimation of Electric Vehicle Battery
Gao Jianshu1,2, Liu Hao1, Wang Mingqiang1, Shi Jinglun1, Xing Shujian1
1. Ground Support Equipments Research Base, Civil Aviation University of China, Tianjin 300300, China;
2. Airport College, Civil Aviation University of China, Tianjin 300300, China
Abstract:
In order to solve the problem of lacking SIR particle filter algorithm diversity, the SIR particle filter algorithm is improved to estimate electric vehicle battery state of charge (SOC), with system state continuous approximate distribution sampling regularization filtering algorithm. By the ampere hour method to build the state space model of the battery and identify the battery model parameter, the simulation experiment is finished combined with the particle filter algorithm and improved particle filter algorithm in MATLAB. Simulation results show that, the SIR particle filter algorithm estimation errors of SOC becomes larger with the time increasing, the improved particle filtering algorithm to estimate the battery state of charge (SOC) has been close to the true value. Compared with the SIR particle filter, the improved particle filtering algorithm is of high accuracy and better adaptability than the SIR particle filter algorithm, providing a new idea for estimating SOC of batteries used in electric vehicles.
Key words:    particle filter algorithm    state of charge    matlab    estimation    errors    regularization filter algorithm   
收稿日期: 2016-04-13     修回日期:
DOI: 10.13433/j.cnki.1003-8728.2017.0919
基金项目: 国家自然科学基金青年基金项目(61405246)、中央高校基本科研业务费(3122015C012)及中国民航大学科研启动基金项目(2014QD11X)资助
通讯作者:     Email:
作者简介: 高建树(1966-),研究员,博士,研究方向为民航特种设备,1185727205@qq.com
相关功能
PDF(909KB) Free
打印本文
把本文推荐给朋友
作者相关文章
高建树  在本刊中的所有文章
刘浩  在本刊中的所有文章
王明强  在本刊中的所有文章
史经伦  在本刊中的所有文章
邢书剑  在本刊中的所有文章

参考文献:
[1] 张吉星.纯电动汽车动力锂离子电池SOC估计算法研究[D].长春:吉林大学,2015:4-5 Zhang J X. Study on state-of-charge estimation method of lithium-ion battery for battery electric vehicles[D]. Changchun:Jilin University, 2015:4-5(in Chinese)
[2] 高明煜.动力电池组SOC在线估计模型与方法研究[D].武汉:武汉理工大学,2012:23-25 Gao M Y. Study on models sand methods for online estimation of state of charge of power battery pack[D]. Wuhan:Wuhan University of Technology, 2012:23-25(in Chinese)
[3] 余运俊,谌新,万晓凤.电动汽车电池荷电状态估计研究综述[J].电源学报,2014,12(3):95-102 Yu Y J, Chen X, Wan X F. Reviewer of estimating the state of battery charge for electric vehicle[J]. Journal of Power Supply, 2014,12(3):95-102(in Chinese)
[4] 吴红杰,齐铂金,郑敏信,等.基于Kalman滤波的镍氢动力电池SOC估算方法[J].北京航空航天大学学报,2007,33(8):945-948 Wu H J, Qi B J, Zheng M X, et al. Ni-MH battery state-of-charge estimation based on Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007,33(8):945-948(in Chinese)
[5] 时玮,姜久春,李索宇,等.磷酸铁锂电池SOC估算方法研究[J].电子测量与仪器学报,2010,24(8):769-774 Shi W, Jiang J C, Li S Y, et al. Research on SOC estimation for LiFePO4 Li-ion batteries[J]. Journal of Electronic Measurement and Instrument, 2010,24(8):769-774(in Chinese)
[6] 华周发,李静.电动汽车动力电池SOC估算方法综述[J].电源技术,2013,37(9):1686-1689 Hua Z F, Li J. Summary of methods for state of charge estimation of EV power batteries[J]. Chinese Journal of Power Sources, 2013,37(9):1686-1689(in Chinese)
[7] 黄妙华,严永刚,朱立明.改进BP神经网络的磷酸铁锂电池SOC估算[J].武汉理工大学学报(信息与管理工程版),2014,36(6):790-793 Huang M H, Yan Y G, Zhu L M. SOC estimation of lithium iron phosphate battery based on improved BP neural network[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2014,36(6):790-793(in Chinese)
[8] 蒋蔚.粒子滤波改进算法研究与应用[D].哈尔滨:哈尔滨工业大学,2010:25-28 Jiang W. Studies and applications on improved particle filter algorithm[D]. Harbin:Harbin Institute of Technology, 2010:25-28(in Chinese)
[9] Schon T, Gustafsson F, Nordlund P J. Marginalized Particle filters for mixed linear/nonlinear state-space models[J]. IEEE Transactions on Signal Processing, 2005,53(7):2279-2289
[10] 李超.电动汽车用镍氢电池模型参数辨识和SOC估算研究[D].天津:天津大学,2007:3-4 Li C. Study on parameter identification and SOC estimation of Ni/MH battery for EV[D]. Tianjin:Tianjin University, 2007:3-4(in Chinese)
[11] 张金龙.动力电池组SOC估算及均衡控制方法研究[D].天津:天津大学,2012:11-12 Zhang J L. Research on SOC estimation and balance control methods for power battery packs[D]. Tianjin:Tianjin University, 2012:11-12(in Chinese)
[12] 吴笑民.基于IPSO-RLS优化RBF神经网络动力电池SOC估算研究[D].武汉:湖北工业大学,2015:3-5 Wu X M. Study on SOC estimation of power battery based on IPSO-RLS optimized RBF network[D]. Wuhan:Hubei University of Technology, 2015:3-5(in Chinese)
[13] 刘彦忠.车用动力电池充放电特性与智能管理技术[D].北京:北京交通大学,2012:21-24 Liu Y Z. Charge-discharge characteristics and intelligent management technology of vehicle battery[D]. Beijing:Beijing Jiaotong University, 2012:21-24(in Chinese)
[14] 梁军.粒子滤波算法及其应用研究[D].哈尔滨:哈尔滨工业大学,2009:20-26 Liang J. Research on particle filter algorithm and its application[D]. Harbin:Harbin Institute of Technology, 2009:20-26(in Chinese)
[15] 曹蓓.粒子滤波改进算法及其应用研究[D].西安:中国科学院研究生院(西安光学精密机械研究所),2012:25-29 Cao B. Research on improved algorithms and applications based on particle filter[D]. Xi'an:Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2012:25-29(in Chinese)