机械动力学:2017,Vol:36,Issue(9):1367-1374
引用本文:
康辉民, 张朝星, 刘艳余, 许功元, 胡斌梁, 周知进. 时变性切削负载对异步型电主轴动态控制精度的影响[J]. 机械科学与技术
Kang Huimin, Zhang Chaoxing, Liu Yanyu, Xu Gongyuan, Hu Binliang, Zhou Zhijin. Influence of Time-varying Cutting Load on Dynamic Control Accuracy of Asynchronous Motorized Spindle[J]. Journal Of Remote Sensing

时变性切削负载对异步型电主轴动态控制精度的影响
康辉民1,2, 张朝星1,2, 刘艳余1,2, 许功元1,2, 胡斌梁1,2, 周知进3
1. 湖南科技大学机电工程学院, 湖南湘潭 411201;
2. 湖南科技大学难加工材料高效精密加工湖南省重点实验室, 湖南湘潭 411201;
3. 贵州理工学院机械工程学院, 贵阳 550003
摘要:
针对电主轴在高速切削过程中动态精度控制不稳定问题,提出一种依据电主轴定子输入端电压、电流值来预测主轴输出转矩和转速的方法。该方法根据无速度传感器矢量控制原理,结合主轴电阻、电感等电磁参数,以转子磁链幅值和相位角为桥梁,建立电主轴定子输入端的三相电压、电流与转子输出端转速、转矩之间的数学模型,从而构建无速度传感器矢量控制下速度外环和电流内环的双闭环控制系统。通过该双闭环系统,将电主轴在切削过程中定子输入端的三相电压、电流,转换成两相旋转坐标系下的电压、电流。并在此基础上,进一步将电流环分解为磁链环和转矩环两个独立控制的子系统,以分别控制转子磁链和电磁转矩,从而可以通过观测磁链环的励磁电流和转矩环转矩电流的变化趋势,判断主轴输出端转矩、转速的稳定性。最后通过切削实验,验证了上述方法的可行性。
关键词:    电主轴    矢量控制    切削负载    动态控制    精度   
Influence of Time-varying Cutting Load on Dynamic Control Accuracy of Asynchronous Motorized Spindle
Kang Huimin1,2, Zhang Chaoxing1,2, Liu Yanyu1,2, Xu Gongyuan1,2, Hu Binliang1,2, Zhou Zhijin3
1. College of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Hunan Xiangtan 411201, China;
2. Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Material, Hunan University of Science and Technology, Hunan Xiangtan 411201, China;
3. School of Mechanical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
Abstract:
To study the instability of dynamic accuracy control of motorized spindle in high-speed cutting process, a method to predict the output torque and speed of motorized spindle based on the voltage and current value of the input terminal of stator is put forward. The method is based on the principle of speed-sensorless vector control and combined with the electromagnetic parameters such as spindle resistance and inductance. And it takes the rotor flux linkage amplitude and phase angle as a bridge to establish mathematical model between the three-phase voltage and current of the stator input and the speed and torque of rotor output. A double closed-loop control system of speed outer loop and current inner loop on speed sensorless vector control is constructed. With the double closed-loop system, the three-phase voltage and current of the stator input during the cutting process are converted into the voltage and current in the two-phase rotating coordinate system. On this basis, the current loop is further decomposed into two independent control subsystems:flux linkage loop and torque loop to control the rotor flux linkage and the electromagnetic torque respectively. The output stability of torque and speed of the spindle can be determined by observing the current trends of flux linkage loop and torque loop. Finally, the method above is verified by cutting experiments.
Key words:    motorized spindle    vector control    cutting load    dynamic control    accuracy   
收稿日期: 2016-02-10     修回日期:
DOI: 10.13433/j.cnki.1003-8728.2017.0910
基金项目: 湖南省教育厅基金项目(12B042,15A063)、湖南省重点实验室开放基金项目(E21637)及湖南省自然科学基金项目(2017JJ2090)资助
通讯作者:     Email:
作者简介: 康辉民(1975-),副教授,博士,研究方向为数控技术及装备,xykanghm@163.com
相关功能
PDF(941KB) Free
打印本文
把本文推荐给朋友
作者相关文章
康辉民  在本刊中的所有文章
张朝星  在本刊中的所有文章
刘艳余  在本刊中的所有文章
许功元  在本刊中的所有文章
胡斌梁  在本刊中的所有文章
周知进  在本刊中的所有文章

参考文献:
[1] 吴玉厚,李颂华.数控机床高速主轴系统[M].北京:科学出版社,2011 Wu Y H, Li S H. High speed spindle system of CNC machine tool[M]. Beijing:Science Press, 2011(in Chinese)
[2] 康跃然,史晓军,高建民,等.多参量耦合的电主轴热特性建模及分析[J].西安交通大学学报,2016,50(8):32-37,129 Kang Y R, Shi X J, Gao J M, et al. Modeling and analyzing multi-variable coupling thermal characteristics for motorized spindle[J]. Journal of Xi'an Jiaotong University, 2016,50(8):32-37,129(in Chinese)
[3] Abele E, Altintas Y, Brecher C. Machine tool spindle units[J]. CIRP Annals-Manufacturing Technology, 2010,59(2):781-802
[4] Holkup T, Cao H, Kolář P, et al. Thermo-mechanical model of spindles[J]. CIRP Annals-Manufacturing Technology, 2010,59(1):365-368
[5] 陈小安,刘俊峰,合烨,等.高速电主轴热态性能及其影响[J].机械工程学报,2013,49(11):135-142 Chen X A, Liu J F, He Y, et al. Thermal properties of high speed motorized spindle and their effects[J]. Journal of Mechanical Engineering, 2013,49(11):135-142(in Chinese)
[6] 刘俊峰,陈小安.基于耦合模型的高速电主轴动态分析与优化[J].机械工程学报,2014,50(11):93-100 Liu J F, Chen X A. Integrated model-based dynamic analysis and optimization of high speed motorized spindles[J]. Journal of Mechanical Engineering, 2014,50(11):93-100(in Chinese)
[7] 汪博,孙伟,闻邦椿.高转速对电主轴系统动力学特性的影响分析[J].工程力学,2015,32(6):231-237,256 Wang B, Sun W, Wen B C. The effect of high speeds on dynamic characteristics of motorized spindle system[J]. Engineering Mechanics, 2015,32(6):231-237,256(in Chinese)
[8] 孟德浩,龙新华,孟光.高速电主轴转子——轴承系统动态特性分析[J].噪声与振动控制,2012,32(2):7-12 Meng D H, Long X H, Meng G. Analysis of dynamic characteristics of rotor-bearing system of high speed spindle[J]. Noise and Vibration Control, 2012,32(2):7-12(in Chinese)
[9] 张丽秀,阎铭,吴玉厚,等.150MD24Z7.5高速电主轴多场耦合模型与动态性能预测[J].振动与冲击,2016,35(1):59-65 Zhang L X, Yan M, Wu Y H, et al. Multi-field coupled model and dynamic performance prediction for 150MD24Z7.5 motorized spindle[J]. Journal of Vibration and Shock, 2016,35(1):59-65(in Chinese)
[10] 吴亮亮.磁悬浮轴承-转子系统的运动稳定性与控制研究[D].天津:河北工业大学,2015 Wu L L. Research on motion stability and control of magnetic bearing-rotor system[D]. Tianjin:Hebei University of Technology, 2015(in Chinese)
[11] 谢振宇,牟伟兴,周红凯,等.基于转速的磁悬浮轴承转子系统变参数控制[J].振动工程学报,2012,25(6):739-744 Xie Z Y, Mou W X, Zhou H K, et al. Variable parameter control of active magnetic bearing rotor system based on rotation speed[J]. Journal of Vibration Engineering, 2012,25(6):739-744(in Chinese)
[12] 赵静.磁悬浮轴承电控系统的研究[D].南京:南京航空航天大学,2015 Zhao J. Research on electric control system of active magnetic bearings[J]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015(in Chinese)
[13] 章淑锳.磁悬浮轴承柔性转子系统的H控制研究[D].南京:南京航空航天大学,2011 Zhang S Y. Research on Hcontrol of flexible rotor system supported by active magnetic bearings[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese)
[14] 龙亚文,谢振宇,徐欣.磁悬浮轴承H鲁棒控制策略研究[J].振动与冲击,2013,32(23):115-120 Long Y W, Xie Z Y, Xu X. Hrobust control strategy for an active magnetic bearing[J]. Journal of Vibration and Shock, 2013,32(23):115-120(in Chinese)
[15] McFarlane D, Glover K. A loop-shaping design procedure using Hsynthesis[J]. IEEE Transactions on Automatic Control, 1992,37(6):759-769
[16] Pesch A H. Development of chatter attenuation robust control for an AMB machining spindle[D]. Cleveland, Ohio:Cleveland State University, 2013
[17] 吴国庆,张钢,张建生,等.基于DSP的主动磁轴承电主轴控制系统研究[J].电机与控制学报,2006,10(2):118-120 Wu G Q, Zhang G, Zhang J S, et al. Study of control system of motorized spindle supported with AMB based on DSP[J]. Electric Machines and Control, 2006,10(2):118-120(in Chinese)
[18] 汤恩琼,房建成,郑世强.磁悬浮电动机柔性转子振动控制与试验研究[J].机械工程学报,2015,51(1):106-116 Tang E Q, Fang J C, Zheng S Q. Vibration control and experimental study of flexible rotor in magnetically suspended motor[J]. Journal of Mechanical Engineering, 2015,51(1):106-116(in Chinese)
[19] 朱熀秋,黄振跃,阮颖,等.交流主动磁轴承电主轴线性二次型最优控制[J].电机与控制学报,2012,16(10):71-78,94 Zhu H Q, Huang Z Y, Ruan Y, et al. Linear quadratic optimal control of electric spindle supported by AC active magnetic bearings[J]. Electric Machines and Control, 2012,16(10):71-78,94(in Chinese)