机械动力学:2017,Vol:36,Issue(9):1320-1326
引用本文:
张永红, 桑阳, 葛文杰, 徐磊. 多相材料的柔性机构拓扑优化设计[J]. 机械科学与技术
Zhang Yonghong, Sang Yang, Ge Wenjie, Xu Lei. Topology Optimization Design of Compliant Mechanisms for Multiphase Materials[J]. Journal Of Remote Sensing

多相材料的柔性机构拓扑优化设计
张永红, 桑阳, 葛文杰, 徐磊
西北工业大学机电学院, 西安 710072
摘要:
基于变密度法建立了多相材料的插值模型,并建立了以结构输出点位移最大为目标、材料体积为约束的多相材料柔性机构拓扑优化数学模型。运用移动渐近线方法对微型柔性夹钳设计开展拓扑优化并对结果进行分析。结果表明:基于多相材料的柔性机构拓扑优化方法能大幅降低拓扑结构的最大应力水平,但也一定程度上减小了结构输出点的位移。整体而言,该方法具有可行性,能有效解决工程中遇到的因应力过大而导致的结构失效问题。
关键词:    柔性机构    多相材料    拓扑优化    优化算法    柔性夹钳   
Topology Optimization Design of Compliant Mechanisms for Multiphase Materials
Zhang Yonghong, Sang Yang, Ge Wenjie, Xu Lei
School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Based on the variable density method, the interpolation model for multiphase materials is established, and the topology optimization model for the compliant mechanisms with the maximum displacement of the structure and the material volume as the constraint is established. The miniature flexible clamp for example, with the Method of moving asymptotes(MMA) to complete the calculation, and the topology results are analyzed. The results show that the topology optimization method of compliant mechanisms for multiphase materials is feasible, which can significantly reduce the maximum stress level of the topology structure, but also to a certain extent, the displacement of the output point of the structure is reduced. As a whole, the method is feasible, and can effectively solve the problem of structural failure caused by excessive stress in the project.
Key words:    compliant mechanisms    multiphase materials    topology optimization    flexible clamp   
收稿日期: 2016-06-13     修回日期:
DOI: 10.13433/j.cnki.1003-8728.2017.0902
基金项目: 国家自然科学基金项目(51375383)、陕西省自然科学基础研究计划项目(2017JM5001)及西北工业大学青年教师国际名校访学支持计划项目资助
通讯作者:     Email:
作者简介: 张永红(1971-),副教授,硕士,研究方向为柔性机构拓扑优化设计、机器人机构学,zhangyonghong@nwpu.edu.cn
相关功能
PDF(1010KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张永红  在本刊中的所有文章
桑阳  在本刊中的所有文章
葛文杰  在本刊中的所有文章
徐磊  在本刊中的所有文章

参考文献:
[1] Thomsen J. Topology optimization of structures composed of one or two materials[J]. Structural Optimization, 1992,5(1-2):108-115
[2] Sigmund O, Torquato S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[C]//Proceedings of the SPIE 3040, Smart Structures and Materials 1997:Smart Materials Technologies, March 3, 1997, San Diego, CA. San Diego, CA:SPIE, 1997,3040:52-60
[3] Sigmund O. Design of multiphysics actuators using topology optimization-part Ⅱ:two-material structures[J]. Computer Methods in Applied Mechanics and Engineering, 2001,190(49-50):6605-6627
[4] Gibiansky L V, Sigmund O. Multiphase composites with extremal bulk modulus[J]. Journal of the Mechanics and Physics of Solids, 2000,48(3):461-498
[5] Yin L, Ananthasuresh G K. Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme[J]. Structural and Multidisciplinary Optimization, 2001,23(1):49-62
[6] Wang M Y, Zhou S W. Synthesis of shape and topology of multi-material structures with a phase-field method[J]. Journal of Computer-Aided Materials Design, 2004,11(2-3):117-138
[7] Zhou S W, Wang M Y. Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition[J]. Structural and Multidisciplinary Optimization, 2007,33(2):89-111
[8] Ren L, Yang R, Mi D H, et al. Topology optimization design for micro compliant mechanism with two materials[C]//Proceedings of the SPIE 6042, ICMIT 2005:Control Systems and Robotics, September 20, 2005, Chongqing, China. Chongqing, China:SPIE, 2005,6042:60424A
[9] 孙士平,张卫红.多相材料微结构多目标拓扑优化设计[J].力学学报,2006,38(5):633-638 Sun S P, Zhang W H. Multiple objective topology optimal design of multiphase microstructures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006,38(5):633-638(in Chinese)
[10] 孙士平,张卫红.多相材料结构拓扑优化的周长控制方法研究[J].航空学报,2006,27(5):963-968 Sun S P, Zhang W H. Investigation of perimeter control methods for structural topology optimization with multiphase materials[J]. Acta Aeronautica et Astronautica Sinica, 2006,27(5):963-968(in Chinese)
[11] Bendsϕe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988,71(2):197-224
[12] Bendsϕe M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989,1(4):193-202
[13] Mlejnek H P, Schirrmacher R. An engineer's approach to optimal material distribution and shape finding[J]. Computer Methods in Applied Mechanics and Engineering, 1993,106(1-2):1-26
[14] Sigmund O. Design of material structures using topology optimization[D]. Denmark:Technical University of Denmark, 1994
[15] Svanberg K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987,24(2):359-373
[16] Svanberg K. The MMA for modeling and solving optimization problems[C]//Proceedings of the 3rd World Congress of Structural and Multidisciplinary Optimization, May 17-21, Buffalo. New York:[s.n.], 1999
[17] Bendsϕe M P, Sigmund O. Material Interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999,69(9-10):635-654
[18] Svanberg K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987,24(2):359-373
[19] Svanberg K. The MMA for modeling and solving optimization problems[C]//Proceedings of the 3rd World Congress of Structural and Multidisciplinary Optimization, May 17-21, Buffalo. New York:[s.n.], 1999